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PREFACE

This report is the second of a series describing experimental work presently
under way at Philco-Ford Corporation on the character of compressible free
rurbvlent flows, and especially on the characteristics of hypersonic wakes.
It deals with the measurement and the spatial and spectral resolution of
fluctuations in an axi-symmetric compressible wake and discusses the sim-
flarity rules by which these results can be extended to higher speeds.

This work has been preceded by Philco-Ford Reporg No. U-3978, 'Mean-Flow
Measurements in an Axi-sy -etric Compressible Turbulent Wake,' 1 March 1967,
{n which measurements of the mean properties of the wake dealt with herein
were presented. A tiird report, "Turbulent Front Structure of an Axi-
symmetric Compressible Wake," describing the intermittency measurements,

is being prepared.

The author acknowledges with gratitude, the financial support and encourage-
ment of the Advanced Research Projects Agency, the Space and Missile Systéms
Organization, USAF, and the Philco-Ford Corporaticn; the Analysis Section of
the latter was especially helpful with the machine programming and
computations. Special thanks are also due Dr. John Laufer, Cénsultant,

for many stimulating discussions, and Mr. Lee Von Seggern, whose expert

assistance with the equipment and instrumentation proved of great value in

this work.




ABSTRACT

The turbulence characteristics of an axi-symmetric wexe shed by a very
slender body at Mzch 3 have been measured with the hot-wire anemometer.

The region covered began at transition, located immediately downstream of
the model, and ended about 100 virtual wake diameters downstream. By using
computer-aided corrections to the anemometer frequency response, maps of
the temperature and axial velocity fluctuations, their cross-correlations,
spectral density, and auto correlation macroscales were obtained as a
function of the axial and radial coordinates. Beyond 40 wake diameters from
the virtual origin, dynamic equilibration forces these distributions into
seemingly self-preserving forms. These forms are identical with their
imcompressible counterparts except for a coordinate transformation already
suggested by the dvnamic equilibrium hypothesis and the Reynolds analogy
typical of adiabatic flows. The density macroscale is numerically smaller
than that of the velocity, although they both approximate the transverse
wake scale. Away from the axis, both the fluctuation magnitudes and their
spectral densities are distorted by the pseudoturbulence generated by the
intermittent boundary, which was found to be a weakly periodic structure

with a wavelength on the order of the wake diameter.
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NOMENCLATURE

Transfer function of voltmeter detector
Dimensionless hot-wire overheat (Equation (21))
Transfer function of amplifier (Equation (6))
Heat capacity of hot-wire

Function of hot-wire finite circuit factor
Virtual turbulent wake diameter (squared)

Actual rms frequency-integrated output of overall
system (rms volts)

Tdeal rms frequency-integrated output of overall
system (rms volts)

Mean voltage across hot-wire

Rms voltage output of system within passband at
frequency f (modally unresoived)

Rms voltage "input" at frequency f into the wire
(or, same type of voltage output from a perfect
wire)

Rms voltage output at frequency f from wire
(including its lag)

Same as above, but at amplifier output

Same as above, but at compenlitor output

i




NOMENCLATURE (Continued) 4

e*z(f) Ideal mean-square output of system at frequency f

esTVM Vacuum-tube (mean-square) voltmeter cutput of
entire system: actual system

%

eV%VM Same as above: 1deal system

E2 Equation (3)

E' Equation (12)

e Hot-wire sensitivity to mass-flux fluctuations

e, Hot-wire sensitivity to total temperature
fluctuations

eg Hot-wire sensitivity to entropy (temperature)
fluctuations

er Hot-wire sensitivity to vorticity (velocity) .
fluctuations

f Frequency (dimensional)

fB Frequency passband used (dimens‘onal)

£(M) Universal function of similarity radial
distribution of fluctuations

g(M) Universal function of similarity radial
distribution of fluctuations

g(0) Value of g on axis

G Amplifier gain

Go . Amplifier gain at zero frequency

H Wave-analyzer transfer function ’

I Hot-wire current

J Error ratio (Equation (16))

- K Function of hot-wire overheat

iy.
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. NOMENCLATURE (Continued)

1 Hot-wire length

L Transverse scale of wake

m Local mass-flux (product pu)

M Mach number

M Wire time constant

MI Hot-wire constant at current I

Ms Time constant of amplifier

n, Nondimensional frequency (based on velocity
macroscale)

ng Nondimensional frequency (based on density
macroscale) )

i Nuo Hot-wire Nusselt number based on stagnation
conductivity
. OTF overall transfer functicn

P pressure

pt Pitot p.essure

r Density defect (Equation (86))

R Hot-wire resistance

Tt Mass-flux-total temperature cross-correlation
coefficient

'gT Veiocity-temperature cross-correlation coefficient

Hot-wire re:istance at current I
Recovery resistance of wire

Heated resistance of wire

i case i ey

Turbulent Reynolds number
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NOMENCLATURE (Continued)

Wire Reynolds number (bs:ed on stagnation viscosity)
Function of the turbulent Prandtl -umber
Nondimensional total temperature tluctuation
Temperature

Total (local) tenperature

Nondimensional temperature (Equation (88))
Axial velocity

Nondimensional axial velocity (Equation (87))
Local velocity scale (Equation (57))

Wave analyzer output (volts dc)

Same as V

Nofse output of wave analyzer (volts dc)
Velocity defecti(Equation (64))

Compensator transfe:r function

Designation of present experiment

Q (=1, Il.....) designation of computer program
Axial coordinate

Nondimensional axial coordinate (Equation (81))
Axial position of virtual origin

Axial position of me;surements

Radial coordinate .

Function of Mach number (Equation (37))

Temperature coefficient of resistivity at

. recovery temperatute

vi
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NOMENCLATURE (Continued)

Function of the Mach number (Equation (38))
Ratio of specific heat

Rms value of the local variable Q

Frequency interval

Finite circuit factor

Hot-wire recovery factor

Nondimensional radial coordinate (Equation (60))
Temperature defect (Equation (85))

Autocorrelation macroscale of the density
fluctuations

Autocorrelation macroscale of the velocity
fluctuations

Local density of flow
Density scale
Nondimensional density (Equation (89))

Rms nondimensional frequency-integrated temperature
(density) fluctuation

Same as above but within a passband Af
(i.e., density fluctuation density)

Turbulent Prandtl number

Rms nondimensional frequency-integrated velocity
fluctuation ‘

Same as above but within a passband Af
(1.e., velocity fluctuation density)

Function of the wire overheat

Conditions external to wake

Conditions on axis
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SECTION 1

INTRODUCTION

Renewed interest in the study of turbulence in compressible wakes has been

: generated by the need to predict the radar-scatteriné characteristics of
re-entry flow fields. Formidable difficulties in fluid mechanics and

. chemistry have directed current research toward two distinct goals. One
is the study of the wake turbulent structure itself; the other is a search
for the link between the gasdynamical and electronic turbulence properties
of a hydrodynamically turbulent plasma. This report addresses itself to
the first problem. :

Because high-speed wakes involve fluctuations in the pressure, density,
and temperature in addition to the velocity, unknowns of interest should
now include the density or temperature fluctuation magnitude and its radial
and axial distributions, as well as the distribution of spectra, autocor-
relation functions, and scales of the same properties. To these, one should
add the statistical distribution of fluctuation magnitudes and, of course,
the intermittency characteristics of the turbulent bcundary. Further, there
, are éwo idiosyncracies of the compressible wake which bear heavily on the

deslgh of an experiment. TFirst, the inviscid gradients generated by vehicle

shock waves force the wake to grow into a nonuniform stream; this puts a

premium on the search for the self-preserving characteristics of the turbulent




wake so that the turbulent structure can be predicted regardless of inviscid
gradients. Second, in contrast to low speeds, transition in the supersonic
wake can occur at some distance behird the vehicle; :he question arises as

to the initial values of the turbulence properties in the transition zone.

Very little has been done to answer these questions. Most of the available
information comes from two sources; low-speed experiments (References 1
through 5) and very recent &ttempts to measure these properties in .allistic
ranges (References 6 and 7). The attractiveness of producing wakes with
hypervelocity pellets in the latter 1is severely offset by two factors;
first, the lack of pellet path control and probe position; and, second,
difficulties with Taylor's hypothesis (Reference 8). For example, it is
imposéible to perform repeated shots with slender bodies at zero angle of
attack and to control, a priori, the path of the probe in the wake; the
radial position of the measurement point is therefore always in doubt, and
measurements near the wake axis obviously cannot be made for many tens
(perhaps hundreds) of base diameters. However, at these far distances,

the mean flow velocity around the probe might be =0 low that the turbulence
structure might change éignificahtly; the so-called Taylor's hypothesis,
which is crucial to the interprétatiOn of data, is thus invalid.

We conclude that ballistic range experiments, although of qualitative value
at high Mach numbers, cannot match the precision and accuracy of wind tunnel

work in this regard.

In the meantime, attempts have been made to approach the problem theoretically;
several are summarized in Reference 9. Recently, Morkovin (Reference 10)
correlated low- and high-speed experimental data within the scope of the so-
called dynamic equilibrium hypothesis and his suggestions were expanded by
Laufer (Reference 11) specifically to the axi-symmetric hypersonic wake.

The power of this latter approach lies in the dependence on concepts verified
experimentally (Reference 1) and on its potential of providing useful pre=
dictions for the hypersonic wake by unifying incompressible and compressible
behavior into relatively simple rules. By virtue of both its simplicity and
promise, this theory will play a central role in interpreting the present
experimental data.

-2-




No wind tunnel turbulence measurements of compressible wake flows have been
reported to date. Such experiments are held back mainly by shortcomings of
hot-wire anemometry and, in the case of axi-symmetric wakes, by the diffi-
culty of suspending axi-symmetric models at high speeds. Of these two
problems, the former is the most serious, and was overcome in the present

experiment by a complex and admittedly laborious process.

The present work deals with the turbulent field alone and has been preceded
by a detailed study of the mean (time-averaged) flow field in the axi-
symmetric wake. These mean-flow measurements, described in Reference 12,
are necessary in order to compute the sensitivity of the hot wire to the
different modes of turbulence and to relate the turbulence properties to
the local and integral properties of the flow. The reader should consult

Reference 12 for details regarding the mean-flow properties and the instru-

mentation and techniques by which these properties were measured.
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SECTION 2

APPARATUS AND TECHNIQUE

2.1 WIND TUNNEL AND MODEL

The experiment was performed at Mach 3 in a continuous air wind tunmel.

" The wake was produced by a circular rod supported by a strut upstream of

the nozzle throat and cantilevered into the test section through the

‘throat. The Reynolds number in the test section was 50,000 per cm,

generated by a tunnel total presesure and temperature of 508 mm Hg abs
ard 27°C, respectively. Further details on the tunnel itself appear in

Reference 13.

2.2 GENERAL FEATURES OF THE FLOW FIELD

Figure 1 shows a schematic view of the model and wake flow. The wake is
formed by the boundary layer shed off the body; transition to turbuleicc
could be located ::t will along the axi-symmetric wake by changihg.phe
tunnel total (suppiy) pressure. At the chosen pressure of 508 mﬂ;, .
transition lies between about 10 and 15 base diameters downstream of the
b‘iﬁ,«;’lgtihg for the maximum turbulent wake length accessible to probes;

| A B e

at the ?ﬁ time, the wake is &ﬁ‘tiwlytilmt‘ thun ‘would be obtained if
 transition was moved to the model surfac .:

to the model surface. Furthermore, since laminar

» ol T
o= TR

PR e = T




TEST ‘ . FIXED NOZZLE STILLING
SECTION BLOCK CHAMBER

\ /
\L--— \\

0.156 IN.
- l =
3.0IN. C f = =
i
——
g
| 7 7
HOLLOW SONIC SUPPORT
ROD THROAT STRUT
F09781 U

FICURE 1. TOP: PHOTOGRAPH OF TEST SECTION SHOWING AXISYMMETRIC MODEL
AT LEFT, PROBE AT LEFT AND PROBE ACTUATOR (TOP LEFT).
BOTTOM: DETAILS OF THE AXISYMMETRIC MODEL.




wake shock disappeared completely at this pressure and the Mach number

external to the turbulent region was 2.96 +0.02 for the entire wake length.

2.3 HOT-WIRE ANEMOMETER

The turbulence properties were measured with a single 0.00005-inch-diameter,
0.01-inch-long pt 10% Rh wire; the hot-wire probe is pictured in Figure 2.
Prior to use, each wire underwent a temperature-resistance calibration in

a controlled oven and a calibration of its heat-transfer characteristics

in a known supersonic flow external to the wake. The details of these
preparatory steps are given in Reference 12, together with numerical

results of the calibrations.

The single most important precaution in mounting the hot wire for use was
its strain gage characteristic. The problem, arising from structural
oscillations of the wire in the flow and superposing on the output spectrum
numerous misleading energy peaks, has been thoroughly described by Morkovin
. (Reference 14). By using only those wires with significant slack (e.g., a
quarter-circle), it was possible to obtain completely undistorted spectra.
In practice, each single wire was routinely subjected to a test wher«by its
output spectrum in the turbulent wake was obtained prior to use. A wave
analyzer with a mechanically driven frequency sweep was especially helpful
in these tests. In practice, about 80 percent of the wires mounted were
rejected because the spectrum so obtained showed discernible strain gage

E nroblems, of the type shown in Figure 3.

Spatial resolution of the wire in the transverse direction was controlled,
of course, by its length, which was 0.01 inch. By contrast, the wuke
diameter was about 0.30 inch on the average so that the probe resolution
was of order 1/30. It should be also ncted that the wire was positioned
at all times along a direction normal to the distance between it and the
wake axis. In additfon to the spatial resolution necessary for these

measurements, the temporal resolution was of great importance. This was

controlled by the wire time-constant limit at zero current (on the order
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FIGURE 2. HOT-WIRE ANEMOMETER PROBE SHOWN AT NEARLY FULL-SCALE AND
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of 0.1 millisecond) and the floor-to-ceiling ratio of the compensating
amplifier, which was 500 in the present instance. The resulting frequency
response of 800 kilocycles per second représented, when divided by the
free-stream velocity, a scale of about 0.2 the body diameter. This short-
coming was significant but not prohibitive and, as will be seen below, was
overcome by detailed spectral measurements at the higher frequencies. The
frequency response of the anemometer (its transfer function) is discussed
ir Appendix A. An idea of the response speed of the instrument under

typical operating conditions can be obtained from Figure 4.

2.4 ELECTRONIC INSTRUMENTATION
A block diagram of the instrumentation necessary to record the turbuleace
. data is shown in Figure 5; the same equipment was earlier used for the

» -

mean measurements. H

The wire was powered by mercury cells con;ained in the Transmetrics, Inc.
Model 6401-1 Current Control Panel, and éignal amplification and compensa-
tion was achieved by a Transmetrics Model 6401-5 Constant Current Amplifier
and a Model 6401-7 Square Wave Generator. A Hewlett-Packard Model 3440A
Digital Voltmeter and a switching circuit selectively displayed the wire
current and voltage, alleviating the need of bridge-balancing during the
probe traverse. Measurement and display instruments included a Ballantine
Model 320A true RMS Voltmeter, a Singer-Metrics Model SB-76Z 1 to
300-kilocycie-per-second Panoramic Wave Analyzer, a Hewlett-Packard

Model 310A 1.5-megacycle Wave Analyzer driven by a 297A Sweep Drive, a
Tektronix Model 551 Dual-Beam Oscilloscope, and a Hewlett-Packard

Model 7000A X-Y Recorder. An intermittency meter, designed by

Dr. H. Shapiro and built at Philco-Ford by Mr. L. Von Seggern, was used

for intermittency and other statistical measurements. A Tektronix Model 549
Storage Oscilloscope with dual-trace capability (effected by a Tektronix

Model 1Al Chopper) was also used for statistical measurements.

-10-




FIGURE 4. TYPICAL OSCILLOGRAM OF INTERMITTENT WIRE OUTPUT NEAR WAKE EDGE.
TOP TRACE IS VOLTAGE OUTPUT SHOWING A 15-MICROSECOND 'EVENT"
DURING WHICH THE WIRE IS IMMERSED IN TURBULENCE. BOTTOM TRACE
1S RECTIFIED ANALOG OF THE TOP TRACE, USED FOR MEASURING THE
INTER} ITTENCY FACTOR, NOTE FAST HOT-WIRE RESPONSE: DOTS ARF
SPACED ONE MICROSECOND APART.
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2.5 EXFERIMENTAL PROCEDURE

The measurement of the rms fluctuations of the flow variables and of their
spatial ccrrelations in the wake lies within the capability. of the constant-
current anemometric technique developed for compressible flows by Kovasznay,
Morkovin, and their co-workers (References 14 and 15). The latter tech-
nique, bolstered by the computer-aided process of extending the wire
frequency response, was used throughout this work. The measurements were
performed by obtaining radial proiiles of hot-wire output at 14 axial
positions along the wake (designated X-Station O through 13) beginning at

17 model base diameters downstream of the base and spaced 0.500 inch apart.
The several weeks needed to obtain the necessary data and the inevitable
wire breakage* forced the use of several wires during the measurements.

All data were obtained from traverses along the Z-axis.

There are two types of analyses of the hot-wire output which are of interest.
4 By the modal analysis, we seek to break down the fluctuations received
within a certain bandwidth into contributions from each flow variable
o (modn); e.g., the velocity or the density. The bandwidth chosen may be
small, in which case the spectrum of each separate mode can be obtained, or
large enough to cover the entire frequency range, in which case the fre-
quency-integrated contribution of each mode to the total hot-wire output
can be determined. In the former instance, the spectral analysis of the
signal yields the relative importance of each mode at different frequencies

(or wave numbers) and allows for the computation of the mode autocorrelation

function and its turbulence scales. In any case, the first basic step con-

sists of measuring the total wire output at each of at least three heating
currents; knowledge of the mean-flow properties is also necessary to compute
the sensitivity coefficients (Reference 14). Three equations are thus
obtained and one can solve for three unknowns: the mass-flux fluctuation,

A(pu) /pu, total temperature fluctuation, ATo/To, and the cross-correlation,

*Some 0.00005-inch-diameter wires survived more than 50 hours of tunnel
time; the average was closer to 20 hours.

1




r of these two fluctuations. The accuracy of this measurement can be

mt’
increased if more than 3 measurements are taken and, in fact, 15 different
values of heating current have been chosen in the present experiment. The
highly redundant system of 15 equations was then solved by the least-squares

method.

At each axial station, the wire was first placed just outside the wake, its
current was fixed to the desired value, its time constant was measured by
the square-wave nicthod, and the compensating amplifier was adjusted to that
value of the time constant. The wire was then traversed radially across
the wake and a continuous trace of its average voltage and the frequency-
integrated mean square of its fluctuating output, deriving from the maximum
possible bandwidth of the system, were obtained. This procedure was
repeated for each of 15 different wire currents for a total of 30 data
curves at each axial station. There were 15 mean-wire voltage versus
radius, such as shown in Figure 6, and 15 traces of the frequency-integrated
mean-square ac component of the wire output versus radius. An example of

the latter is shuwn in Figure 7.

If the frequency response of the wire-amplifier-compensator system were
linear over the range of the flow fluctuation spectrum, the data mentioned
in the above paragraph would be sufficient to resolve the signal into the
frequency-integrated contributions from each turbulence mode at any desired
point in the wake. However, neither the amplifier nor the compensator
could attain a linear transfer function over the 500-kilocycle-per-second
(kcps) range where signals were, by preliminary measurement, known to occur.
In addition, because of the local Reynolds number variation in the wake,
the constant-current wire underwent a change of its time constant with
radius and thus a change of its own fransfer function (frequency response).
Because of the intense turbulence, proper compensation of the wire within
the wake was not possible. Even if it were, the point-by-point adjustment

of the compensator transfer function would increase the already taxing

labor of fluctuation measurements well beyond practical proportions. It is
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therefore clear that some of the signals contained in the turbulent fluid,
(i.e., those at the higher frequencies), were missing from the 15 traverses

previously mentioned.

To overcome this difficulty, the following principle was invoked: the
amount by which an imperfect mechanical system distorts (e.g., attenuates)
an input signal can be found by measuring the transfer function (i.e., the
frequency resporse) of the system itself and of its output. Thus, the out-
put spectra of the wire at each axial position were recorded for a nurier
of currents and radial positions*. The results were combined wirh tne
known overall transfer function of the wire-amplifier-compensator system
to yield the ideal frequency-integrated mean square voltage output, e*z,

of the wire as a function of axial and radial coordinates x and y

2
2 W
g f VoL 2o (g—z
e*x (x,y) o ¢ G B .
£

ID
njo N

= = & (xy Yy, I) (1)

2 )
e (ny) f V2 (f) d _f_
(o] B
2.2 2. 2

where e2 is the recorded mean squ-~re output, WOGOIC G~ the overall tvansfer
function, Vz(f) the wave analyzer output at each frequency, and f and fB
are the l-kilocycle-per-second analyzer bandwidth. The error ratio, J,

thus obtained was then applied to the mean square output from the constant-
current traverses of the type shown in Figure 7 to correct for tke nonlinear
response of the system. A separate computer program was set up to bring
about this response restoration effect; this is the WEB-II program (See
Appendix B). Figure 9 shows the variation of the wire time constant and
error ratio across the wake 17 diameters downstream of the base. Interest-

ingly, J approaches a limit independent of wire current as the latter

*This was done for each of 8 currents and at 10 radial positions for a
total of 80 spectra at each axial station. Combined with the mean and
turbulence measurements, a total of 115 traces were necessary at each
axial station. An example of such spectra is siown in Figure 8.
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increases.* It should be noted that the time constant, M, inside the wake

was computed, for each current, by

R
_ I QR/JI)
= S [(aR/ D, R @

where MI is the time constant measured at the wake edge, I is the current,
and R is the wire resistance. In this way, reliance on a theoretical cal-
culation of M is largely circumvented and only the dependence of M on
overheat and Reynolds number is retained (see Appendix A). A final point
concerning the role of the error ratio, i.e., the need for the response
restoration procedure, is shown in Figure 10. We see that, in the region
investigated, J decreases towards the far wake but remains higher than

unity. Corrections were thus necessary even at about 100 diameters down-

stream.

The procedure described above was necessary to give correct results for
the modal analysis of the data, that is, correct values of the frequency-
integrated but modally resolved fluctuations from point to point. The
computer program set up to handle the above '"response restoration' of the
anemometer system (see Appendix B) also supplies the fluctuation spectrum
(i.e., the true distribution of the flow disturbances with frequency
corrected for any shortcomings of the instrumentation) at each axial posi-
tion for each of 10 radial locations and, at each of the latter, at each
of 8 heating currents. The output of spectra listed in WEB-II

(Appendix B), thus formed the basis of the spectral analysis wherein the
spectral density of the temperature (density) and axial velocity fluctuation

and of the cross-correlation could be resolved at each point in the wake.

*Figure 9 shows that the zero-current value of the time constant in the
free-stream approaches the theoretical value of about 0.1 millisecond by
which the frequency response to 800 kilocycles per second was originally
estimated. Because of the large increase of the time constant in the
wake, however, the response capability decreases there and results in
the large J's measured. 3
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The essential point here, hitherto not appreciated, is that at the present
state of the art, spectral measurements are mandatory whether or not a

spectral analysis of the data is intended.

2.6 DATA REDUCTION AND PROCESSING

2.6.1 SIGNAL PROCESSING

It is now necessary to describe how the data as obtained above were pro-
cessed through the electronic equipment shown in Figure 5. This descrip-
tion utilizes the principles rather than the exact characteristics of the
electronic components used in this experiment (the latter being given in

Appendix A) so as to be of value to others engaged in similar work.

For a fixed current, the sensible real input to the measuring system of a
constant-current anemometer is a voltage fluctuation into the wire.
Between the latter and the recording device, the signal proceeds through
the elements of the block diagram of Figure 5 and is thus affected by the
transfer functions of these elements. Generally, these transfer functions
execute selective filtering or amplification, squaring, averaging, inte-
grating, and so on. Because these functions are often unobtainable from
the manufacturer, they were measured carefully pricr to this work, a pro-
cedure necessary to increase accuracy and, as shown in the preceding

section, to make the wrrk possible in the first place.

Consider that the continuous Fourier spectrum of the flow into the wire

(or, otherwise stated, the output of the wire if the latter had no thermal
lag) is the sum of contributions of a large number of discrete oscillators,
each vibroting at frequeicy f, and contributing a mean square voltage

ez(f) flow (volts)z/cps in the interval Af. Then, since these ccntributions

are additive in the squaie, the overall wire signal is

2 8 2
E° = f e” (f) £low df (volts) (3)
A .

-
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. Because of the well-known thermal lag phenomenon (Reference 11),'the
. 2 2
. d
actual mean square wire output e (f)wire will be lower than e (f)flow’ an

the transfer function W(f) of the wire is then defined by

e(f)flow

W(f) (D)

21 ()
wire
The signal is now inserted in an ac amplifier with transfer function G(f)
which can be split into a frequency-independent zero-frequency gain, Go’
and the amplifier drop-off characteristics G/Go(f); the amplifier output,
e(f) can then be defined by

amp

e(f)am G
G(f) = —-P—e(f)wire = 5 O, e, (5)

The signal next proceeds to the compensating amplifier which has usually a
zero-frequency gain of unity, a transfer function, C(f), and an output,

e(f)comp’ such that

g e(f)
C(f) = —eS0B (6)

e(f)amp
Note that C(f) is also a strong function of the compensator time-constant
setting and that it generally rises well above unity to some maximum and

thereafter decays.

If Equations (4), (5), and (6) are combined, the mean square voltage com-
pensator output for a specific flow input, ez(f)flow’ in the passband Af

around the frequency, f, is given by

2 2
2 . Cp et 2 2
e (f)comp Af wz(f) e (f)flow Af (volts) (7)

It should be noted that the quantity CG is a given function of frequency
for a given setting of the electronics. The quantity CG/W, on the other
hand, which . 1 equivalent to the overall transfer function (OTF) is addi-

tionally a function of the wire time constant and thus a function of the




wire and flow characteristics, changing from current to current and from
point to point in the wake; however, it is insensitive to the magnitude of
e2(f)flow within broad limits. The OTF was provided, as a function of
frequency at each wire current and point in the wake, by the output of the
WEB-1I program, and a typical plot is shown in Figure 11. Note that the
system response deteriorater, although not greatly, as the fraquency

increases.

There are two alternatives to further processing of the data. For spectral
analysis, one uses a wave analyzer with constant-bandwidth, fB cps; in this

case, the analyzer also incorporated a detector with transfer function, H,

such that
2 2 2 2
Vo(f) = H [% (f)comp fé] (volts) (dc) (8)
and thus
2 Z
e2(f)fl = z > g (volts)2 (mean square) 9)
ow c“ 6" W f :

The integrated fluctuations obtain when a wideband rms voltmeter obtains

the sum of the compensator output

2 "2 2
eyTV M f e (f)comp df (volts) (mean square) (10)
o

and thus

3 ) f c? g2
VIVM -

This voltmeter also has a detector of transfer function A which converts

ez(f)flow df (volts)2 (mean square) (11)

the mean square fluctuating voltage into a dc voltage E' such that

2

! =
E A ey

volts (dc) . (12)

for use with the X-Y recorder.
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When™ both the spectrum and the integrated measurements are performed, we
have available a cross-check of the experiment since, by relating

Equations (9), (11), and (12) we can write

| B B 2
E' _ 2 _ c- G- 2 _ v () (£
A~ Svrw f 5~ ¢ (Dgyon 9F F f ol e R
o W o H B

This check was performed at each measuring point with the aid of computer

program WEB-II and gave satisfactory results, as can be seen in Figure 12.

Returning now to Equation (11), we rewrite it as

C A2 2
2 2 G C 2
€yTVM Gof 2 2 * (f)flow e (14)
o G W
o
For an ideal amplifier (flat to infinite frequency), G/G is unity; C is
supposed to have a characterist1c exactly inverse to W below some frequency
at which it peaks, and if e (f)fl = 0 beyond that point, then C/W is

also unity over the spectrum. In this case, the ideal mean square voltage

2 2 2 . 2
e*VTVM Go f e (f)flow df (volts) (15)
o

is obtained, and thus the error ratio, J, is computed as explained in

paragraph 2.5.

n)
2 f _L). _<23 d G—Z
e
5 2.v'rvm N B (16)
€yTVM -—g—)- d (—f——>
£
o H B

Note that, as explained previously, J = 1 for an ideal electromechanical
gsystem (W/C = 1, G/G0 = 1), and also that J can be obtained accurately
if H and fB are unknown but still independent of frequency.
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A last point concerns the subtraction of electronic noise from the measure-
ment. When the wire heating current is turned off, the rms voltmeter reads
a noise level (eVTVM) noise, whereas with the current turned back on, a

reading (eVTVM) meas 1S obtained. Because the turbuleze and electronic

noise are uncorrelated, one obtains

2 _ 2 i 2 (17)
€vTvM €VTWM | meas €VvTWM | noise

for use with the previous formulas. A similar correction is necessary in
the spectral measurement. If Vm (f) is the analyzer detector output (in

volts) and Vn (f) is the corresponding noise at frequency f, then

G- -

is the corrected reading (in volts squared) at that frequency.

-28-




. Knowledge of the wire Reynolds number Re, cause from the diugnosis of the
mean properiies of the wave, described in Reference 12. The modal analysis
into the rms normalized mass-flux and total temperature fluctuationms and

their correlation

o)
] ).

was then made by the simultaneous solution for the 3 unknowns of 15 equa-

tions of the type*

2
*
. e 2 2 2 2
GZ ;2 e m + e, tT -2 mtrmt e e, (28)
o

where (e*z/G% 52) is the normalized voltage fluctuation adjusted for the
zero-frequency amplifier gain, G,. (The bandwidth of these modal measure-
ments was in each case sufficient to include sensible signals at &all
frequencies.) Here e* (volts) refers to the ideal frequercy-integrated

mean-square wire output at each particular value of the heating current
2 [® 2 ] 2
e G°'£ e (f)flow df (volts) (29)

Note the similarity with Equations (3) and (15), which say that

e E e = E” G (30)

* Following past practice, the unknowns are obtained by the computer from
the shape parameters of the second-degree curve fitted to the 15 experi-
mental points. (See Appendix D. )
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2,6.2 MOL.MT, ANALYSIS

Once supplied with a method for alleviating the response shortcomings of
the system, the turbulence data (i.e., those described by the 15 traverses
mentioned earlier) could be reduced. The sensitivity coeffi-ients e  and
e_ to mass flux and total temperature fluctuations, respectively. were
computed by the following slightly modified form of Morkovin's

(Reference 14) formulas

, Re ONu A Re N
e = e A 0 8 2 - S a (19)
m f { w Nuo Reo T M Reo
r ' Re BNuo
e, = Ce K + A, K + 0.765 ﬁ:; SiZ; - 1.885)
B (20)
- 0.765 éﬁ_ EEQ Eﬂl
) T T Re
wr o

where Ce accounts for the circuit impedance, Twr and K are related to the

1 .
resistance-temperature slope, and A 1is Morkcvin's overheat parameter

' 1I0R

Y 21
Aw 2 R Sf (21)
associated with the wire resistance R change with current, 1, which could
be directly obtained from the traverses of Figure 6. TFor the type of

hot wires employed (Reference 12), the zero-current Nusselt Number Nu,

based on the stagnation conductivity is given by

Nu, = 0.04186 Re + 0.1803 VRe, *+ 0.1078 (22)
whence
oNu, 0.0902

= 0,04186 + (23)
5Reo VPe,

Similarly.

0.05661 (24)
Re0

n = 0.99 + 2 174




Alternatively, a move revecaling and practically important modal split
decomposes the signal intc vorticity (velocity), entropy, and sound
fluctuations (Reference 14 and 15). It is significant that both Kovasznay
(Reference 15) and Kistler (Reference 17) have confirmed the relative
unimportance of the sound mode inside compressible turbulent shear flows,
compared to the rorticity and entropy modes. The data of the present
experiment were thus further reduced on the assumption that there were no
sound fluctuations inside the turbulent wake. At each ooint in the wake,
another 15 equations are obtained of the type

e"'\'2

s
(o]

2 2, 2 2
“ e T + eg O + 2 e, ey Iqr TO (31)

where the vorticity fluctuation

Lhe (Qﬂ) rme | ‘ (32)

u

an. the entropy fluctuation

o () o - (8.

and, of course

EE | EE
P P e

The coeffocients e, and eq of wire sensitivity to vorticity and entropy
fluctuations, respectively, have been derived by Morkcvin in terms of the

corresponding coefficients e, and er given by Equations (19) and (20)
er = ey + qe, (35)

¢g = Per - e : (36)

* Following past practice, the unknowns are obtained by the computer from
the shape parameters of the second-degree curve fitted to the 15 experi-
mental points. (See Appendix D.)

(4
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where o and B are functions of the specific heat ratio Y and tue Mach

number M
-1
a = [1 +MM2] (37)
2
B = a@-1) u? (38)

Again, the curve-fitting process was used to solve the redundant system

of 15 equations, such as (31), for T, 0, and the correlation rg..

it is of interest to look at the variation of wire sensitivity “c the
different modes with heating current, as shown in Figure 13. The out-
standing feature is the existence of values of the heating current for
which the sensitivity e, to vorticity vanishes, as was mentioned in
Paragraph 2.5. This important fact, first recognized by Kovasznay
(Reference 15), implies that in the absence of sound the density fluctu-
ations alrme can be measured directly and quite simply if one knows the
wire characteristics and local flow prcperties precisely; in the present
instance, this circumstance was utilized to provide very satisfactory
cross~checks of thc entropy fluctuation results. It was also used for

studying the internittent nature of the density profile of the wake.

2.6.3 SPECTRAL ANALYSIS

As mentioned, im of Spect 1 analysis (or, more precisely, modal-
spectral analysis).is to show tWe spectral distributions of each mode of
fluctuation. The k y to this an%}ysis {s that the equation of modal
resoiution, Equation\(Bl) is 1nd§pendent of bandwidth. Because the
fluctyations are consgant with frequency £ to good approximation within

the ljkilocycle-per-séhond bandwidth used, we can write the modal equation

3 = e T () + ec ] (f) +2 e, g5 Tyl Yo (£)T(£) (39)
o . b
\

\ -32- .
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2 5
at each frequence f, where e* (f)/e2 is the nondimensional mean-square

output per kilocycle. The sensitivity coefficients retain their previous

values.,

By way of clarification, note that when the sum of signals in all adjoining

passbands is taken and the result integrated over frequency, Equation (39)

gives

00 o0 00

1 *2 D f 2 2 9

= _e_zj e’ (£)df = e T2(£)df + e f o (£)df
[o] [o]

GO JU
00
+2 e eTJ rg (£)O(E)T(£)dE (40)
[o]
so that
00 ' ’
2 2
f e* (£)df = &* (41)
[o]
k- pm
: o(£)df = o (42)
Y0
1 oo
, 12(£)df = T2 (43)
5 Jo
é P“
) mortBOOIT(OE = 1o T (44)
[o]

which brings us back to Equation (31). The latter quations should also
dispel confusion regarding dimensions and units. For example, th2 output

spectral deunlty c*z(f) should be defined in a way (e.8., (volts)zlkcps)

~Ylim




i = B P T
TR N e e = i s a

consistent with the integrating interval df (e.g., kilocycles per second.
If the quantities T(f)/ T ana 0(f)/ 0 are defined as the velocity (vorticity)

and density (entropy) spectral densities, the spectra are normalized to
unity; that is

-]
izf 12(£)df = 1 (45)
"

[o]

o0
1 2
ZI o°(f)df = 1 (46)
geedy .

The spectra can next be normalized ty the characteristic frequency of the
turbulent flow, which is u/Aj, where u is the local flow velocity and
Ai_is the integral scale appropriate to the quantity i (szif the entropy
scale, A T the vorticity scale) which is derivable from the Eulerian time
integral scale for the single wire; the latter is coﬁnected with the

spectrum (Reference 18) so that

lin  TA(E) _ “Ay ;72(01 (47)
f—-o T2 u T2
A
lim gzgfz " gl - () (48)
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SECTION 3

PRELIMINARY OBSERVATIONS

3.1 THE EXTERNAI TURBULENCE FIELD

The amount of free-stream (ambient) turbulence in thé wind tunnel was
measured prior to the study of che fluctuations in the wake. The stream
turbulence is often a critical factor in that it can add to the noise of
the electronic equipment in obscuring the turbulence level in the waxe
itself. Initial measurements without the model in place showed rather
large fluctuations, on the order of 1 percent in the mass flow and

0.3 percent in the total temperature. Measurements performed later with
the model in place end with the computerized data reduction process
described in the previous paragraphs disclosed the above computations to
be larger than the actual turbulence level by a factor of about 3. At no
time was the stream turbulence level a serious obstacle to the fluctuations

in the wake, including the points of observation farthest downstream.

3.2 OBSERVATIONS ON THE TRANSITION PROCESS

Although this work was not aimed at investigating the events in the laminar
wake leading up to transition ta turbulence, some interesting phenomena
were detected in the laminar and pretransitioﬁal flow. Briefly, a sharp

energy concentration at about 20 kilocycles per second was observed to

-37-

i




occur in the laminar wake, with the rest of the spectrum completely devoid
of fluctuations. As the wire approached the transition zoae, the ener,(y
prominence first increased in magnitude and then rapidly began to feed
energy into the higher frequencies. Further downstrean, the peak decayed
so that a completely random spectrum remained in the turbulent wake. This
result was obtained both by first keeping the wire stationary and moving
the transition forward toward the probe by increasing the tunnel pressure,
and also by keeping the flow fixed and moving tﬁe wire downstream in the
laminar wake toward the transition zone. It was also obtained with differ-
ent wires. These facts, added to the care exercised to recognize and
reject extraneous signals, strongly suggest that the phencmenon is real

and is further associated with the transition process. The intriguing
possibility of finding a connection between laminar instability and transi-
tion to turbulence suggests that further exploration.of this phenomenon is

needed. These observations are pictured in Figure 14.

I ’ ] | ' [ Teenaz

F09853 U

FIGURE 14, UNPROCESSED HOT-WIRE SPECTRA TAKEN AT A FIXED LOCATION IN
; THE WAKE FOR DIFFERENT TUNNEL STAGNATION PRESSURES SHOWING
THE ONSET, INCREASE AND "SPECTRAL SPREADING" OF L AMINAR
INSTABILITY,
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SECTION 4

SIMILARITY CONSIDERATIONS

We shall preface the description of the experimental. results by outlining
current empirical predictions of the distribution of turbulence properties
in the wake. Our chief premise is that, following a certain relaxation
period, the turbulence properties may soon adjust to a self-preserving
(similar) form connected simply with the local mean properties. If it
exists, this similarity behavior should be closely connected with the
behavior of incompressible turbulent flows. By providing experimental
proof of a more general rule, insensitive to compressibility effects, we
have a good chunce of extending our present results to cover the dynamics

of wake flows at very high Mach numbers.

The dynamic equilibrium hypothesis (DEH), discoursed at length by Townsend
(Reference 1), prescribes that the large eddies maintain a dynamical
balance between the extremities of turbulent shear zones in a way that
simﬁly relates the fluctuations and the mean prOpertiés. These ideas,
formulated in context with incompressible flows, have been recencly
extenaed to compressible turbulent flows by Morkovin (Reference 10) and

Laufer (Reference 11). Morkovin observed that, with appropriate scaling,

the turbulent energy distribution in sheair flows is inseasitive to geometry




and Mach number. Extended to the compressible turbulent wake by Laufer,
and restricted to adiabatic flows, this observation has the following

implications:

(1) There are no fluctuations in the flow

total temperature

ATO = 0 (49)

(2) In consequence, the entropy (density) and
vorticity (velocity) fluctuations are related

through the local Mach number, M

©p/p) pns

2
Golwy v-HH (50)

(3) The temperature and velocity fluctuations

are perfectly anti-correlated

rgy = -1 (51)

(4) The nondimensional turbulent energy is a
universal function g of a properly transformed

transverse coordinate 7}

oaw? = p 0 s (52)

where p' and U are appropriate density and

velocity scales, respectively.

4.1 VELOCITY FLUCTUATIONS
We can now write certain consequences of the dynamic equilibrium hypothesis
arising from Equation (52). As Laufer (Reference 11) pointed out, a more-

general form of Equation (52) is

o’ Y = P v T e (53)
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P P = e e e (S e P T v e

where m = 0 or 1 for planar or axi-symmetric geometries, respectively, and
where the quantity AQ stands for the root-mean-square (dimensional) fluc-
tuation of the quantity Q. Here Y is a transformed radial coordinate

which might be of the type
r
Y2=2f—p—Ydr (54)
o "

We immediately see that the latter choice is unacceptable 1if F)(Au)z is to

be truly similar, because we would then have

tf

c
n

<]

(X, n) gMm (55)
p'u

because p/pm is generally a function of both X and Y. We therefore choose

Y=Y, tha;.is, we use the premise that similarity in the turbulent energy

exists in the physical rather than the Howarth-Dorodnitzyn plane. This

also implies a certain insensitivity to the geometry, in agreement with

Morkovin's observations. Thus Equation (53) reduces to Equation (52).

We will next recognize that the scales are given by
Density Scale: p' = p_ (56)
Velocity Scale: U = u - u(o) (57)

were o refers to conditions outside the wake and (o) refers to conditions

on the axis. The first obvious result is that

2
L - (58)
© U

which for the axis reduces to

2
J%égl Sé%égll- = g(o) = constant (59)
-]

U




in contrast with the incompressible wake for which Au(o)/U = constant,
Since p(0) < Poo in the compressible wake, the fluctuations are initially
higher (and much more so for hypersonic wakes) than for low-speed wakes.

Eventually, of course, p(o) = P, and the constant ratio of g(o) is attained.

The radial varistion of the velocity fluctuations in terms of the variable
n - X
L (60)

where L is the transverse wake scale (Lo be discussed shortly), obtains,

directly from Equations (58) and (59)

2
P (bu _ _ M .
p (o) (Au (o)) g(o) £M) (€1)

vhere f(7) is another unique function of 7). The universality of this
function can be tested by comparing (for example) velocity fluctuation
profiles (Au)2/(Au(o))2 in incompressible flows with the profiles

o (Au)zao(o) (Au(o))2 of the present experiment. At any rate, since

p > p(o), the profile (ODu)/ (Du (o)) in the compressible wake is somewhat

thinner than in the incompressible wake.
The following corollaries can Be drawn from Equations (58) and (61)

2

L P [(tu
LL (&) . g m (62)
L2 (@)

ou? (Bu/uw)?

5 5 = £() (63)
p(0) u(e)” (Au(o)/u(o))

where w is the so~called velocity defect

- u(o) 7
. . - (64
o0
and also
2 2
fufo) ° _ go) W (65)
u(o) (1 -r) (1 -w?
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where the density defect

P, = p (0)
= B e 66
d ) (66)

oo
As will be discussed below, the defects W and r are known functions of the
axial coordinate X so that the i-dependence of the velocity fluctuations
can be predicted. In the meantime, we again note the influence of com-
pressibility on the axial decay of the velocity fluctuation on the axis,
as given by Equation (66) and the axis value of Equation (62)

2 p wl
(4‘%21) - gvi—® = g) T3 (67)

In both cases, we observe that the fluctuation decay is faster iu the com-

pressible wake because of the decrease in r with axial distance.

4.2 TEMPERATURE AND DENSITY FLUCTUATIONS
The prediction of Equation (49) for adiabatic flows together with the
likelihood of insignificant sound fields allows us to comstruct the simi-

larity behavior of the temperature and density fluctuations

e _ _ 41
2 T (68)
@ap | Ln (69)

p T
where the parentheses again denote rms values. Equation (50) rewritten as
%_T - (’y-l)Mzeﬁ (70)

immediately leads to the radial profile of the temperature fluctuations as

normalized to the axis value

o () () - o
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and its corollaries

B ()’ (ol - o
(1 (i) - o

Here we note the analogies among Equations (61), (71), and (72). 1In the
same spirit, we inquire about the axial variation of the axis values of the

density and temperature fluctuations. 1In analogy to Equation (59) we

obtain
1/2
AT(0) . Fe i 2w (1+86
T(0) - Te [S(O) p(O) &y 1) M(o) 8 (1 -w) (75)
where @ is the temperature defect g
T(o) - T
e = T (76) .

and where M(o) is the Mach number of the axis. A more convenient expres-
sion can be given using the experimentally determined (Reference 12)

relation
6 = (Y-1) Miw S (77)

where S is a known :umber on the order of 0.8 related to the turbulent

Prandtl number. Then

AT (o) ) 1/2
T(o) ? Te - % [8(0) Ez:? (L -w) (78)

The ratio of the temperature fluctuations on the axis to thc temperature

difference across the wake is therefore not constant, as Gibson (Reference 4)
found for the sphere wake in water, but - 'losely follows the behavior of




the density and velocity defects. In fact, the density fluctuations

given by
1/2
—Qp) 1 [ .&(21]
= g(o) (1 -W) 79 s
P, - Fl0) S [ (79) '

analogous to Equation (78), obvious y increase with axial distance.
Both Equations (78) and (79) also predict that at very far distances
from the body (p(o) =P ws 0), the temperature and density fluctuations

so defined approach the value (g(o))l/Z/S.

The behavior of the fluctuations as given above carry (concealed) the

surmise that the appropriace density sca'e p', is, in fact, given by p' = p
0

(see Equation (56)). Furthermore, the constant g(o) is needed in applying

these formulas. An interesting relation devoid of these requirements is

the ratio
( Ap(o) ) / ( Ap(o) ) . (Q-r)(1-w) ' (80)
Py = P/ / \Ug = u(o) S

obtained from Equations (59) and (79). Both sides of Equation (80) have
been measured independently in this experiment and a check would be much

in order.

4.3 SPATIAL DISTRIBUTION

The velocity, density, and temperature fluctuations are given above in
terms of the mean-wake properties and particularly in terms of the
defects w, 6, and r. This representation is powerful in that it bypasses.
an exact knowledge of the mean-property distribution in the wake.
Nevertheless, the latter distributions are now well understood for
compressible wakes in general and, by the results of Reference 12, for

the wake at hand in particular. To describe the functional forms AU(n,i),
etc., we will first list the main features of the mean flow field of this

wake as given in Reference 12, .
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The coordinates arve defined by

_ X - X
Axial coordinate X = g (81)

‘/CDA

Radial coordinate M| = (82)

L
Here X is the actual distance behind the body base, X, the X-position of
the effective wake origin (found to lie about 8 diameters behind the base),

and (CDA)I/2 {s the virtual (drag) diameter of the wake; in the present

instance¥
(CDA)1/2 = 0.216 cm

The wake transverse scale, L, is given by

CDA 1/2
L 4—’"7 (83)
and the velocity defect
2/3
W oE ed— (EI) Ty = 12.8 (84)
w173 \§6 273’ Rr ‘

It should be noted that the 7 of Reference 12 was formed by using the
Howarth-Dorodnitzyn radius, which was very similar to the physical radius,

Y, beginning a very short distance away from the axis.

The density and temperature defects are

6 = (Y-1M vs (85)

*Thc value (CnA)1/2 = 0.278 cm given in Reference 12 is an average
including measurements in the up-down directionm, less accurate than the
value 0.216 cm. However, the latter value was used to compute X in
Reference 12.
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and

IR (86)

Again, the quantity 01.2/3 appearing in place of S in Equation (38) in
Reference 12 has been replaced by a more general function, S, of the tur-
bulent Prandtl number, OT; which varies from about 0.78 to 0.88 along the

wake, tending toward 0.84 far along the wake (see Figure 35, Reference 12).

The radial variation of properties is as follows

u_  -u 2
o~ %
o
% T - Ty /um- u T
Pt -, T - u(o)) L Py ™ DD )
Py - P T N
> e e - = [ __m a1
e P, - p(0) T[T ( T(O)) ¥ T(O)] (89)

The values of w, 8, and r found experimentally in Reference 12 are listed
in Table I. It will be noted that they obey the above relations

(Equation (64), for example) only after a certain relaxation length behind
the transition region. We therefore anticipate that a similar relaxation
veriod will be found in the fluctuations, i.e., that the findings of
Paragraphs 4.1.1 and 4.1.2 may, i{f at all, fit the data only after some
distance behid the body. Based on Reference 12, this distance was a
minimum of 40 in i. contrested with the distance X & 90 covered by the

measurements,

By combining the equations of Paragraphs 4.1.1 &ad 4.1.2 with those of
Paragraphs 4.1.3, the behavior of the fluctuations :long the wake can be
predicted. For brevity, these combinations are outlined in Table II. At
intermediate X's the similarity behavior of the compressible wake differs
distinctly from that of the incompressible wake because of density factors
such as the ratio p (o)4q- and the defect, r. This intermediate region




TABLE 1

MEAN-WAKE PROPERTIES ON WAKE AXIS (FROM REFERENCE 12)

X-Station X w e r
0 14.71 0.276 0.754 0.433
1 20.60 0.222 0.622 0.379
2 26.50 0.181 0.522 0.334
3 32.39 0.150 0.455 0.303
4 38.28 0.137 0.327 0.253
5 44.17 0.107 0.313 0.246
6 50.07 0.0951 n,283 0.225
7 55.96 0.0731 0.231 0.186
8 61.85 0.0688 0.211 0.167
9 67.75 0.0615 0.181 0.165
10 73.64 0.05935 0.171 0.168
11 79.53 0.0564 0.173 0.133
12 85.42 0.0559 0.168 0.116
13 91,32 0.0490 0.149 0.138

should not be confused with the relaxation region mentioned previously;

we do still expect similarity behavior with radial distance in the former
but not in the latter. Again, note that Au/(u, - u(o)) and apl (py, - (o))
change with X and the former decreases toward its asymptotic linmit JETE_,
whereas the latter increases toward its limit JE?;;/S--liuitl which will,
incidentally, be identical 1if the Prandtl number (and thus also S) is unity.
The velocity fluctuation decay obeys incompressible rules* only in the
limit of very largc‘i.

It remains to evaluate g(o) which, in view of our committment to the dynamic
equilibyvium hypothesis, ahould be similar to the incompressible values.
Unfortunately, the axi-symmetric experiments of References 2, 3, and 5

*Thcoc include the so-called "final period" of the wake.
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lack the adequacy and clarity of data from which g (o), which seems to tend
towards unity near the body, can be obtained at large X. It is interesting,
however, that Townsend (Reference 1, Page 135) obtained the value gz (o) =
0.135 in the two-dimensional wake.

We close this discussion with the remark that the X dependencies of the
velocity defect, the transverse scale L, etc., as shown above, have the

exact form exhibited at low speeds, iancluding the numerical values of the
coefficients (Rt for example). Furthermore, these expressions have been
validated in the compressible wake by the experimental results of Reference 12
and thus add to the expectation that the predictions of the DEH will also be
validated for the fluctuation,

4.4 CORRELATIONS, SPECTRA, AND SCALES

There are some definite, although semiquaiitative, predictions the DEH makes

) concerning the local velocity-temperacure correlation (cross-correlation)

| as well as the fluctuation spectral density. If our picture of large-eddy
equilibration is correct, then we expect Equation (51) to hold, and princi-
pally so for the large eddies {low frequencies); the rationale is that large

| eddies, unaffected as they are by internal mixing, best represent the

extreme conditions across shear zones. In fact, velocity-temperature cor-

relation measurements (References 10, 15, and 17) show that these two

quantities are usually strongly (although not perfectly) anti-correlated.

By the same token, one expects, in the absence of AT, fluctuations,

Equation (50) for the temperature-velocity fluctuation ratio to perform

best at the lower frequencies. Both these phenomena are illustrated by

Morkovin (Reference 10) for the boundary layer.

The integral scale of turbulence (1.e., the autocorrelation macroscale)

should be expected to scale with the transverse scale of the wake mean fiow
A~L

with the constant cf proportionality to be determined by the experiment.
The microscales of the autocorrelation functions will be discussed in a

later report.




SECTION 5

RESULTS OF MODAL ANALYSIS

The experimental recults are summarized in the form of the axis values in
Table III. 1In this section we shall present the resdlts of the modal
analysis of the wake turbulence (the frequency-integrated fluctuation
intensities) beginning with the wire-sensible variables, i.e., the fluctu-
ations in the mass-flow-flux pu and the total temperature Ty, along with
their cross-correlation coefficient. These results, put out by the

WEB-1V program (Appendix D) derive from the solution of Equation (28)
(Paragraph 2.6.2) with the inputs of the latter deriving from the experiment.

Figure 15 shows the variation of the rms mass-flux and total temperature
fluctuations along the axis, where the fluctuations are normalized by the
local (axis) mean values. Note that the total temperature fluctuations are
in fact quite small, attaining a maximum value of 7 percent in the regibn
studied and decaying to about 1 percent at 100 diameters downstream of
transition. This is considerably below all other fluctuation levels and
especially, as will be seen below, the fluctuations in the static temper-
ature. We already see an indication that Morkovin's strong Reynolds

analogy (Reference 10) for adiabatic flows, which implies the criterion of
Equation (49), is at work. The correlation coefficient r-t between mass flux
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TABLE III

TURBULENCE PROPERTIES ON WAKE AXIS

X-Station X Au/u  Ap/p  Bu/(ucu(®)  Aplprp(0))
0 14.71 0.210 0.142 0.549 0.186
1 20.60 0.156 0.148 0.548 0.243
2 26.50 0.113 0.136 0.511 0.272
3 32.39 0.0937 0.154 0.532 0.356
4 38.28 0.0793 0.125 0.501 0.369
5 44.17 0.0531 0.114 0.442 0.350
6 50.07 0.0230 0.100 0.220 0.344
7 55.96 0.0361 0.0993 0.458 0.434
8 61.85 0.0350 0.0852 0.473 0.424
9 67.75 0.0260 0.080 0.430 0.420

10 73.64 0.0252 0.0781 0.399 0.38%
11 79.53 - 0.0649 - 0.423
12 85.42 0.0224 0.0658 0.378 0.500
13 91.32 0.0192 0.0591 0.373 0.368

and total temperature, also shown in Figure 15, implies strong correlation
near the transition zone, but the fluctuations become totally uncorrelated

further downstream.*

The variation of Apu/pu and ATB/To with radius Y is shown in Figures 16 and
17, typically represented by a radial survey about the middle of the wake.

The modal analysis according to Equation (31) hars yielded the local tempera-
ture (density) and axial velocity fluctuations normalized to their respective

mean values, the same quantities normalized to the local mear differences

*Since cross-correlations should be t1 in unsteady laminar flows, it is
suggested that the variation of r e 10 0 ¥ 40 is indicative of the pro-
greseion from the transitional to the fully established turbulent regime;
this agrees with the relaxation (X=40) distance of Reference 12. However,
this is not to be confused with the ~xpectad behavior of ryy sbout which
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across the wake, and the velocity-temperature correlation coefficient which
is, of course, equal in maguitude but opposite in sign to the velocity-
dens 'ty correlation. These quantities are available at the computer output
plotted versus the physical radius Y in inches as well as the normalized
radial distance 7] = Y/L where L is the transverse wake scale availabie from

the mean measurements of the WEB-V computer output (Reference 12).

These turbulence data will be discussed first, as plotted, without regard to
the DEH and its extension to compressible flows. We note, first, the repre-
sentative plots of Figures 18, 19, 20, and 21. Both modes peak at some
distance off the axis, with the peak in the density fluctuations higher and
farther out from the axis. In terms of their locel values, the velocity
fluctuations are considerably lower than the densi-y fluctuations; since the
Mach number in the wake ranges between 1.5 and 3 and the total temperature
fluctuations are very small, this behavior immediately confirms the general
trend of Equation (49). In terms of the differences across the wake, these
two fluctuations are very similar and their maximum values are about 50 per-
cent of these differences, in contrast with the value of 190 percent which
one would be led to believe from rough dimensional arguments. The decay of
the axis velocity and density fluctuations (normalized with their respective

local mean values) with axial distance i{s shown in Figure 22.

We can best illustrate the compressible-incompressible dissimilarities by
summarizing the above diccussion by the plots shown in Figures 23 and 24.

In the former, the rms axial velocity fluctuation normalized with the exter-
nal velocity is shown to decrease along the axis. As predicted in Table II,
this fluctuation decays faster than the (-2/3) power of X; this should be
compared with the incompressible behavior (References 2, 3, and 5). At this
stage the cause can be attributed to the density factor (1 - r) (cf. Table II
and Equation (67)) which of course increases with X. 1In Figure 24, the rms
density ana axiai velocity fluctuation values on the axis are shown as
functions of i, normalized to their respective differences p, - p (o) and

Uy, - u(o) across the weke. Despite the data scatter, it is quite
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obvious that these quantities are each far from unity and in fact change in
opposite directions--the velocity fluctuations decreasing, and the density
fluctuations iacreasing, with increasing X. A quick look at Table II
indicates that this behavior agrees well with the dynamic equilibrium
hypothesis.

Still, the central test is the behavior of the rms fluctuations normalized
te the axis fluctuation with radial distance; these are plotted against the
normalized radius in Figures 25 and 26 for X D44. For the velocity
fluctuations, the apparent lack of perfect similarity is due largely tc
experimental scatter. The role of similarity behavior is shown better in
the density fluctuations (Figure 26) and here it wlll be seen that by
replotting these points according to Equation (72), their dispersion is
considerably decreased. This Aispersion is much wurse for X < 44 than
Figure 26 indicates; the peak n each curve of Ap/Ap(o) exceeds 2.0 nearer
the body. A further point worch retaining from Figures 25 and 26 is that
the peak in the density fluctuation is farther out (near 7 = 2) than it is
for the velocity (cf. Figure 25). This difference is too large to be
explained by arguments of a "thicker temperature wake" and, as will be seen
shortly, practically vanishes when the data are replotted by the method
suggested by the DEH.

A test of Equation (50) which enuncfiates Morkovin's strong Reynolds
analogy (Reference 10) (a corrollary of the DEH) was also made by plotting
the velocity-temperature correlation, Igr» in Figure 27. The Igrversus n
plot presents about 250 experimental points and shows that, with very few
exceptions, Iyy Tanges from -0.8 to -1.0. No systematic radial variation
was found, but anti-correlation weakened somewhat (from -1.0 to -0.6) with
increasing X. This behavior, already hinted by the weakness of the total
temperature fluctuations AIB. indicates that the strong Reynolds analogy
was very active in the wake. Note th.ﬁ Kovasznay (Reference 15) and
Kistler (Reference 17) both found an ro%fof about -0.7 almost constant
with distance across a supersonic turbulent boundary layer. Physically

~ interpreted anti-correlation implies that the vire is struck alternately
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by cild and fast or hot and slow moving fluid, illustrating the rather
rapid transfer across the shear zone and the long rcach of the large
eddies,

So far, the data have been purposefully presented and discussed in a
manuer showing the inadequacy of low-speed arguments to cover the
behavior of the compressible turbulent wake. If these arguments are
indeed special cases of the DEH in the constant-density limit, then
better engineering correlations can be achieved by regrouping the present
data as indicated by the formulas of Paragraph 4.1.1. We shall present

these correlations below,

First, we look for similarity in the radial profiles of velocity and
density fluctuations. In Figure 28, the velocity fluctuations are
plotted as per Equation (61), and this plot should be compared with that
of Figure 25. There is obviously little difference bitween these two
illustrations, which can be attributed to both the uravoidable data
Scatter and the fact that the density gradients extant in this measure-
ment are too small to illuminate the difference. 1In any event, the form
of the function f(n) is quite clear and is, as expected, very close
Qumerically to its form at.low speeds (see Reference 1, Figure 7.4,
Reference 3, Figure 9, and Reference 5, Figure 17), including the location
and value of the maximum.* This forms a strong argument that the DEH
correctly describes the compressible wake.

The effect of proper correlation is the more evident in the density
fluctuations of Figure 29. Here the absence of large total temperature
fluctuaticns collapses the data to a form very much the same as in
Figure 28, exactly as Equations (61) and (71) predict; more importantly,
the peak in the density fluctuations shifts in magnitude and location so
as to make that possible. To illustrate this shift, Figure 30 has beer

*CO-barilon with low-speed data is handicapped by the nonuniform wanner
by which the wake radius has been normalized in the referenc. . quoted.
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plotted. Here the velocity and density fluctuations have been again
plotted as in Figures 25, 26, 28, and 29; the shift in the peak is
clear. In Figure 30, as in the previous illustrations, it is also clear
that at higher 7) (near the wake edge), the distribution f differs
between the velocity and density fluctuations. This is attributable

to the effect of the intermittency.

According to Equation (67), the axis rms velocity fluctuations,
normalized by the free-stream velocity u,, should decay as the (-2/3)
power of X only if multiplied by the density factor (l-r)l/z; such a
plot is shown in Figure 31. The agreement with the predicted decay law
is unsatisfactory; with the possible exception of the last few experi-
mental points, the data decay faster than the (-2/3) power of &,
although, in fairness to the DEH, not as fast as the Au(o)/uw plot of
Figure 23 indicates.

Better agreement obtains when the form of Equation (59) is tested as
shown in Figure 32. 1In spite of the scatter, the velocity fluctuations
normalized approach clearly the limit'VETST'- 0.38 which the DEH,
fortified by Townsend's data (Reference 1), indicate. On the same figure,
the density fluctuations attain the same numerical limit as predicted

by Equation (79). This behavior is quite gratifying because the ordinates
here are formed by grouping various independent measured experimental

quantities.

A further manipulation of the data of Figure 32 removes the need for a
numerical choice for g(o) and reduces the scatter: such is the ratio of
the axis density to the velocity fluctuations in each case normalized
with their mean differences. This ratio should, according to Equation
(80), increase in the similar region and tend toward 1/S=1.18 at very
large X. The solid iino in Figure 33 is the quantity (l-r)(l-w)/S as
rhtained from the mean lealurc-ﬁntl, and the agreement with the data is

very good.
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The decay of the wake temperature fluctuation analogous to the velocity
fluctuation decay of Figdre 22 has been predicted on the basis of the
strong Reynolds analogy (Equation (50)) and the relevant ratio is
plotted versus X in Figure 34. Consistent with the small total temper-
ature fluctuations found, this ratio tends toward unit (i.e., toward
the verification of the analogy and of Equation (50)) at large values
of X. Note that in this and several previous illustrations, a relaxation
distance of about 40 wake (drag) diameters is found, consistent with
the mean-flow results (Referince 12). Other forms of the temperature
fluctuation have not been plotted because the conversion of, say,

AT(0) /1(0) to AT(0) /T, is a simple matter.

In order to test the analogy in the radial direction, the ratio of
Figure 34 is also plotted versus 7N in Figure 35. There are, in fact,
two general types of behavior this ratio follows: uearer the base it
peaks slightly towards unity about one-half the wake radius away from
the axis; farther downstream, the ratio is very close to unity throughout
except near the wake edge, where it increases greatly beyond unity. Both
these pehnomena can be attributed to the intermittent nature of the
turbulent front. In the first instance (Figure 35-a), the local total
temperature fluctuations AI; are importan* enough to destroy the analogy
within the turbulence itself, and the ratio lies sensibly below unity,
Near the actual wake edge,* however, that pseudoturbulent component due
to the intermittency !tself emphasizes the density fluctuations with the
result that a peak appears in the ratio. Farther downstream (Figure 35-b),
the influence of AI; has decreased, but pseudoturbulent density fluctua-
tions due to the intermittency appear at the wake edge, thickening the
arent turbulence diameter (Figures 28 and 29) and the ratio is theredy

diiven to high vz ue.

*This 1is the edge as defined properly by intermittency measurements,

which will be described in a later report,
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] SECTION 6

INTEGRAL SCALES

The integral scales of axial velocity and temperature (density) were
computed by the WEB-VII program (Appendix E) as a function of position,
according to the scheme of Equations (47) and (48). The results are
shown in Figures 36 through 39. As already discussed in Paragraph 4.1,

there are intuitive arguments that the integral scales (i.e., the
autocorrelation macroscales) should be locally proportional to the
characteristic length, L, of the wake and thus grow with the 1/3 power of
axinl distance. To date, however, no information has existed on the
numerical differences between the density (temperature) uacroecale,‘As,

and the axial velocity macroscale, ATor their radial variation.

rigure 36 shows the variation of the axis values of the A normalized
altornntoly with‘/a and with L. There is little doubt thnt on the axis
the ratio AS/L is constant in the similar region of the wake,

o5
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The radial variation of Ag is shown in Figure 37. Immediately downstream
of the transition zone, the density macroscale decreases to a minimum off
the axis and, in fact, attains a value as small as 0.5A () = o). Beyond
that the scale increases Systematically with distance, and in the similar
portion (X > 55.9) it increases linearly from the axis to the apparent
edge of the wake where Ag = 2Ag (M= o). In terms of the transverse
scale, L. this implies

As M= o) = 0.51L

»

with a linear variation in between.

As seen in Figure 38, the axis variation of the axial velocity auto-
correlation macroscale At cannot be pictured effectively because of
excessive data scatter due in large part to scatter in the computer

output in the velocity spectra at very low frequencies; the trend with
increasing X is fairly obvious, however, with the limiting value of Ap
lying between 0.5 L and L. There is less doubt on the radial variation

of Ar, and from Figure 39 we see that here in fact its value is practically
constant at A; = Ap(0) across the wake.

The conclusion drawn is that the expected intimate connection between

Ag (and Aq) with L is indeed verified. It is also evident from Figure 36,
and to some extent from Figure 38) that the equilibrium values of the
scales are arrived at by decrease from the higher values near the transition
region. This is exactly what is expected in events where large-scale :
phenomena, such as laminar instabilities, break up into the smaller scale
turbulent structure. Very much che same results have been lately obtained

by Gaviglio and Favre (Reference 19)..

Figure 40 shows the ratio of the macroscale AS to the macroscale Ap. 1In
accordance with Figures 37 and 39, this varies from about 0.5 on the axis
to about unity at the edge of the wake.
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An important byproduct of the scale measurement is the reassurance that the
experimental conditions are capable of producing valid statistical averages.
The validity condition obviously is that the hot-wire samples a sufficiently
large number of macroscale-size eddies during its exposure to the local
turbulent flow. In this experiment, such local conditions are (for exped-
lency) measured by traversing the wire radially across the wake (cf. Figure 7)
and then by processing the data once all the necescary travorses are taken.
The question therefore arises as to whether the traverse speed is so fast
that the wire does not remain at any particular point in the wake to sample
a sufficient number of eddies. Each traverse lests approximately 10 seconds,
implying that the wire remains approximately 1 second in a radial segment

of the size of the macroscale (about 1 mm). For the prevailing axial mean
velocity of, typically, 50,000 centimeters per second, there are thus about
a half-million eddies in the‘aggrcgate from which the'average is drawn --

a good statistical average.




SECTION 7

SPECTRAL-MODAL ANALYSIS

We shall now present the results of the spectra‘-modal analysis wherein the
distribution of fluctuation intensities will be further expanded into its
Fourier contributions. Before discussing these results, we will utilize
the typical datum from the VEB-VII program output, shown in Figure 41, in

order to define terms, dimensions and units.

There are three main representations of interest for each mode and at each
point in the wake. First, we want to know how much of the total hot-wire
signal is due to density and how much is due to axial velocity fluctuations.
Thus, within a l-kilocycle-per-second passband around each frequency, we
define by 0 (f) the root-mean-square density fluctuation contribution
(normalized with the local mean density) and by 7(f) the corresponding
contribution of the velocity fluctuation. Referring to Figure 41, these
results are shown on the second and third columns as a function of the
frequency, shown in the first column. The units of these quantities are
(kcps) © l; to convert these to (cps)” 1, i.e., seconds, one divides by 1000,
and this has been done in the illustrations plotting these quantities. The
fourth column lists the spectrally resolved cross-correlation coefficient
of density and velocity, which is of course nondimensional.
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A second Tepresentation of fundamental iriportance gives the fraction of the
total fluctuation magnitude which {8 contained in the passband at hand.
Thus,dz(f)/az 1s the ratio of the mean-square densiiy fluctuation magni -
tudz Uz(f) in the 1-kilocycle-per-second passband around the frequency f,
to the tocal (frequency-integrated) mean-square density fluctuation O 2 at
the same point in the wake; note that the connection between O0(f) and
(and also 7(f) and 7) have been given by Equations (42) through (46).

This ratio, and the corresponding ratio Tz(f)/Tz, are found in the sixth
and seventh columns of Figure 41, Again, the units here are in (kcpsz)'1

or milligseconds.

One can employ the third representation, shown in the eighth and ninth
columns, to compare the spectra by the expedient of normalizing the spectral
deasities by their respective zero-frequency limits. These normalized
spectral densities are then dimensionless and are denoted asfyz(f)/oz(O)

and Tz(f)/Tz(O). In this form the spectra can be compared with the cus:om-
ary one-dimensional spectral density deacriptions such as shown in

Reference 18. To this end, the last two columns of Figure 41 also show

appropriate nondimensionalizations of the frequency iuto the forms

fA
nT = TT (90)

fA (91)

n F 3 ———

S u
where AT.and Ag are the respective integral scales and u is the local mean

veloc.ty.

With this introduction, the numerous illustrations shown of spectral densi-
ties are self-explanatory. 1In drawiug r.omparisons and conclusions {t should
be noted that. in the axial direction, we should normally look for an evolu~
tionary adjustment of the spectra within the relaxatior zone X < 40) and
perhaps ;v invariant behavior in the rogion of sslf-preservation. In the
radial directi :, we draw guid?lincs from the results of the modal analysis
and the unpublished results of the internittincy measurements. Thus we are
interested in the following regions: (1) the weke axis (M=0), where the




fluid is fully turbulent, (2) the region of maximum shear (mn = 1.1) which -
coincides with, and obviously gives rise to, the maxima in the fluctuation

magnitudes (compare Figures 28 and 29), (3) the location, in the statistical

sense, of the wake front (N =2.11), and (4) the wake edge which can be

conveniently defined as the point at which the mean velocity distribution

Uis 1 percent of its axis value (i.e., 0.01) and which is thus located

(Reference 12) at M= 3,28,

A good first look of the distribution of spectral densities is given by
Figures 42 and 43. These serve tc bring out the unusual feature of a
fluctuation concentration (peak) at a scale which, from Figure 42, is about
6 times and, from Figure 43, about 12 times che integral scales. 1In

Figure 42, drawn from the relaxation zone (X = 26.5) and in Figure 43,

taken from the self-preserving region (f = 56.0), this peak is generally
absent from the axis and the wake edge and seems to become most intense in
the region 1< 7 <2, {.e., between the maximum shear and the front location.
We shall return to the discussion of this feature in the comments which

follow.

Turning to the spectra on the axis, Figure 44 shows that, initially, the
wire signal is predominated by velocity fluctuations uniformly greater than
the density fluctuations at all frequenc :5: farther downstream, of course,
the situation is reversed (as the modal :-» -ysis has already shown),
although at X = 61.9 the preponderance ot :he density fluctuations is mainly
due to the larger eddies. In the same vein, consider the results at

X = 26.5 of Figure 45. Here O0xT, but the velocity predominates at the
lower frequencies, with the density taking over a range of higher frequencies.
Figure 46 shows that the density fluctuation density (in terms of fraction
of the total local densfty fluctuation) is distributed with frequency in a
way independent of axia! position, and this similarity becomes quite
remarkable, in fact, when the spectra are normalized in the manner of

Figure 47. By contrast to the latter, which presents data beyond X = 56,

consider that the dens ity spectral shape is much more scattered in the
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relaxing_wake, as the data in 146.7< X < 50 plotted in Figure 48 show.
Unfortunately, no such conclusions can be drawn from Figure 49 for the

for the velocity fluctuations, due to the large scatter.*

In the region of maximum shear, Figure 50 again reflects the predominance

of Jdensity fluctuations, whether early (i = 26.5) or late (i = 85.4) in the
wake. At this radial position in the wake, the observed peak sets in at
full strength. In Figure 51, the fractional velocity fluctuation density
clearly shows the evolution of the peak at X = 26.5, 50, and 85.4.
Initially, the peak is located at higher frequency (nTsz 0.2) and occupies

a higher percentage of the total fluctuation; later, it shifts to lower
frequencies and decreases in magnitude. A similar result is seen in

Figure 52 for the density fluctuations as they develop in the relaxation
zone. By contrast, similar results farther along in the wake, shown in
Figure 53, show little difference from X to i, and in' fact the percentage
fluctuation occupied by the peak remains quite constant. On the other

hand, the nondimensional plot of Figure 54 destroys this constancy; even

so, the peak is well discernible. Figure 53 should be contrasted with
Figure 55 which once more points out the unsettled nature of the spectrum
during the relaxation process. ‘Inspection of Figure 55 reveals the evolution
of the peak itself and also the accompanying variation of the high-frequency
components (also shown in Figure 52). It is evident that Fourier contri-
butions of this peak are to be found within a large range of frequencies: as
the peak shifts to the left, so do the higher-frequency comporients. As we
turn to Figures 56 and 57, we observe that not only has the scatter in the
velocity spectra decreased (compare Figure 49), but the peak behaves

differently. Specifically, it seems to disappear completely at the far

*As is easily seen from the spectra, the velocity fluctuation density results
are always accompanied by large scatter, partly because these fluctuations,
being smaller than those of the density, infringe on the error margin of

the measurements.
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distances (i = 67.7, 85.4, 91.3). We therefore conclude that, whatever
mechanisn is responsible for this peak, it operates mainly through the

density rather than the velocity.

A generally identical sort of behavior of the spectral densities can be
found along the turbulent front (M = 2.1), as can be seen from the following
group of illustrations. Of tiese, Figure 58 shous the well-established
decreases of the densities in terms of fractions of the local mean values,
and the tendency of this decrease to occur primarily in the larger eddies.
Figures 59, 60, and 61 use the alternate spectral representations to
illuminate the evolution of the spectra with axial distance. Again, the
shift of the peak to lower frequencies and its decrease with distance are
perfectly clear. 1t is furthermore obvious that, as noticed previously,
the density fluctuation density retains the evidence of this peak for a
perceptibly longer axial distance.

As a final region of interest, consider the wake edge which, in view of our
previous findings, can be thought as lying around M = 3.3. The nondimensional
spectra of the density fluctuations for this radial position have been
plotted in Figure 62 in the self-preserving region. This plot verifies

what was already indicated, to some extent, by Figures 42 and 43, i.e.,

that the spectra have returned to a normal shape, the peak being hardly
discernible.

To formalize what is learned about the radial distribution of spectral
densities, we present Figure 63, where the nondimensional density spectra
have been plotted for all radial positions, at the farthest downstream
position investigated (at X = 91.3). The appearance of the peak here is

quite weak,

An overall conclusion which can be drawn from the inspection of the spectra
is that, the observed pcak.aside, there is little difference between them
and what is usually observed in low-speed turbulent flows in which a certain
amount of homogeneity and isotropy are obtained. In Figure 64, we compare

the present results (typically those shown in Figure 63) with spectra
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obtained by Favre (Reference 20) behind a grid. A commonly ueed analytical .
expression for the one-dimensional velocity fluctuation spectrum is also

shown for comparison. These three spectra differ little for eddy sizes

larger than the integral scale, but there is considerable disagrecment

among the three at the higher frequencies. In fact, the fluctuation

density thus nomalized shows that in the compressible wake studiec the

fluctuation density is, for eddies the size of the integral scale, one-half

as large us at low speeds.

The new and, to a certain degree unexpected phenomenon, is the appearance
of the peak or prominence in the spectra. We have seen that this phenomenon
shows certain organized traits which will be used, in the ensuing discussion,

to discover its origin.

We have noted that the peak behaves as follows: (1) it appears strongest

about hal fway between the wake axis and the wake edge, diminishing toward

the axis and the edge; (2) it appears most marked.y in the initial .
(relaxation stage) and thereafter decays; (3) the peak frequency is initially

quite high (tending toward a length scale approaching the integral scale .
of the turbulence) but thereafter decreases; (4) the peak is more pronounced,

although not by very much, in the density rather than the velocity spectrum.

To these we add two additional observations: (5) when the peak frequency

is plotted versus the radius at various X as in Figure 65, we note that in

the usual dimensional units the frequency is on the order of 50 kilocycles

per second at the beginning, and that its previously noted decrease with X

brings it closer to an average value of between 20 and 30 kilocycles per

second, From Figure 65 one further sees that the value of the peak

frequency tends to attain a maximum at about the midpoint between the

axis (N = o) and the edge. (We shall return to the use of these phenomena.)

Last, the hot-wire signal was passed through an intermittency circuit whose

function was to rectify the turbuvlence component and mark, by an on-off

signal, the entrance and exit of the wire into the zones of turbulence.

The spectrum of this output signal was messured and was found to be
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characteristically identfcal with the total wire output, The peak,
especially, survived the rectification process and appeared intact in the
rectified spectrum. The latter is, in fact, the same as the Schmidt-trigger
output spectrum which Corrsin and Kistler (Reference 21) measured in the

turbulent interface of a jet and found to be of the Poisson type,

The latter test provides the strongest first clue as to the origin of the
peak, namely that it is due tofthe fluctuations arising from the corrugations
of the interface rather than the turbulence within these corrugations. [f,
roughly speaking, the intermittent signal is thought of as a superposition
of turbulcnce on a random train of rectangular waves, then the superposition
will carry over to the spectrum which should, in principle, be similarly
decomposable into the bona-fide spectrum and the pseudoturbulent front
signal. Returning to point (5) and Figure 65, we add here the observation,
that when the '"zeros" of the rectified wave were measured, they yielded a
characteristic frequency (crossings of the wire into the turbulent front)
also of about 30 kilocycles per second, in agreement with the spectrum
measurement results. This frequency naturally also decreased near the

axis and again near the wake edge, implying that Figure 65 shows the

behavior of the front rather than of the turbulence itself.

Comments (1) through (4) can now be put into proper context. If our
hypothesis is correct, then the front pseudoturbulence should be most

intense in regions of the most intense intermittency, which occurs at about
the middle of the wake radius; this is in agreement with Comment (1). The
pseudoturbulence decay, commented on in (2) is, of course, fully predictable.
Observation (4) is also easy to interpret because the momentum exchange
between the large corrugations of the front and the external flow is
probably much more efficient than the exchange of heat. On the other hand, .
the exact interpretation of the frequency shift is in some doubt. If our
hypothesis is true that the front (interface) is indeed weakly periodic,

then this frequency should be characteristic of the wavelength of the front

corrugations. Because the axial velocity of the fron*, itselr unknown,
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must ‘ary .o the axial direction, at least initially, there is little useful
information the initial peak frequency shift can supply. At the same time,
the apparent relaxation »f the peak frequency location to about 30 kilocycles
per second (see Figure 65) is consistent with observations (Reference 22)

of the frequency of 'zero occurrencgs" which was also of about 30 kilocycles
per second. As we saw from the spectra, this corresponds to a scale about

12 times higher than the typical macroscale size, which implies a length of
between 6L and 12L where L is the transverse scale of the wake. From
measurements of the intermittency and zeros, the former agrees with the
microscale of the wake front and is thus advanced here as a representative

value of the wavelength of the front.

In summarizing, the only new phenomenon emerging from the spectral measure-
ments i8 not necessarily the inevitable mixing of the turbulent signals with
the pseudoturbulence of the front, but rather that the latter is not,
apparently, truly random. This organization of the latter into a weakly
periodic structure serves at least as an identification of the pseudo-
turbulent action and could be of potential use in separating the turbulent

from the pseudoturbulent phenomena.

The discussion of the modal-spectral analysis will be concluded with a
brief glance of the spectral distribution of the velocity-temperature
cross-correlation coefficient, as presented in Figure 66. It is seen that
anti-correlation is generally most perfect for the largest eddies lying

on the wake axis near the transition zone, while it is poorest for the
smallest eddies, again on the axis, but far downstream. It is especially
interesting that correlation is generally best for the largest eddies at
any rate, verifying Morkovin's conclusion that these eddies are the ones

responsible for transpcrt across the gradient.

The errors involved in this measurement are in general very difficult to
estimate accurately. Estimates can only be made of the sources of error,
and the specific technique: reducing such errors can be equally well

identified. Thus, major error-producing mechanisms were (1) the inherent
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alignment difficulties of axi-symmetric models, (2) slight differences in
re-installing and re-aligging the mode' each time it had to be removed from
the test section, (3) not fully satisfactory wind tunnel flow (from the
standpoint of uniformity), (4) differences in wire characteristics, since
the inevitable wire breakages required the uses of many wires,* and

(5) unavoidable imperfections in the transfer-function technique. On the
other hand, the care exercised in calibrating wires and identifying the

strain gage problem has been of great help in reducing anomalies in the
data,

By neglecting the sound fluctuations in analyzing the data we have in
effect stated that the normalized pressure fluctuations are insignificant
compared to the density and temperature fluctuations. In this context the
self-consistency of the experiment can be checked by computing the pressure
fluctuations induced by velocity fluctuations as
2

& »~ Y 2 (u

P 2 M (u) 92y
where M is the Mach number. The following tabulation presents results
obtained for two radial locations at X = 14.7. The agreement with the

imposed condition seems very satisfactory, particularly awvay from the axis.

Comparison of Pressure and Density Fluctuations

¥ (inch) n Qu/)  @e/e)  @pp)
0 1.37 0.24 0.075 0.120
0.10 2.76 0.055 0.016 0.16

The large fluctuation levels encountered naturally cast some doubt on the
validity of the technique and the analysis used to reduce the data. Speci-
fically, at least three possible sources of error arise: (1) the wire

heat transfer characteristic may be highly nonlinear over the range of the

* The lesson learned is that with critical or delicate model geometries
and equally delicate hot wires, one obtains the data as fast as practical
vithout disturbing the model in the meantime.
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fluctuations, (2) the wire may become sensitive to the transverse as well
as the axial component of the fluctuations in the velocity vector, and

(3) the fluctuation modes interact nonlinearly among themselves so that
the modal analysis into entropy and vorticity fluctuations is invalid.
Because higher-order moments in the turbulence variables greatly complicate
the formulas, an exact computation of the errors due to these nonlinear-
ities is impossible, although some rough estimates can be made. Thus, the
heat transfer characteristic of the wire is more linear (Reo ~ Nugy) at the
lower Reynolds numbers than at the higher ones and thus derivatives such
as azNuo/aReg are very small; the instrument is therefore more linear at
ikese low Reynolds numbers. The inclusion of nonaxial velocity fluctua-
tions, roughly speaking, sets an error in (Au/u) of about 15 percent for
fluctuation on the order of 0.2, but the error decreases rapidly with the
fluctuation level, i.e., as one moves away (axially or radially) from the
point of maximum level. The nonlinear interaction of modes is difficult
even to estimate except perhaps fo; interaction involving sound (see

Reference 195).

There is, too, the problem of possible distortion of the mean measurements
because of the high turbulence level. Fortunately, the reduction of the
mean data rested on the static pressure which is largely insensitive to

the fluctuations and on the total temperature which was not found to
fluctuate much. These facts, coupled with the insensitivity of the pitot
tube to the turbulence, indicate that the (pT, P, T,) group of measurements
should be always preferred over the (pT, P, Rey) group for mapping the
mean field fn highly turbulent flows.
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SECTION 8

CONCLUSIONS

On the basis of the work performed to date, the follcwing conclusions can

be drawn regarding the turbulent wake investigated:

(1) The transition to turbulence of the axi-
. symmetric was clearly triggered by the
amplification of a laminar irstabilicy,
The highest local fluctuation levels
observed lay in or immediately downstream

of the transitinn zone.

(2) The overwhelming majority of the turbulence
properties tended to relax into a self-
pPreserving form within a region of about
40 virtual diameters downstream of transition.
However, the possibility exists thet the
relaxation distance is in general a function

of the free-stream flow parameters.




(3) It has been verified that, on account of the

(4)

(5)

(5)

small total temperature fluctuations measured,
the so-called strong Reynolds analogv holds
for wakes produced by adiabatic bodies.

The radial distributions of the temperature
(density) and axial velocity fluctuations,

when scaled by factors drawn from the Reynolds
analogy and the dynamic equilibrium hypothesis,
appear to be identical with each other and to
their low-speed counterparts. This similari:cy,
occurring in the physical rather than the
Howarth-Dorodnitzyn plane, verifies that the
equilibration nrocess is local and maintain.d
by the larger eddies. Thus, the velocity

and temperature fluctuations are well anti-

correlated, mainly for the larze eddies.

The axis values of the velocity and temperature
fluctuations are likeuise in agreement with
the qualitative and quantitative features of

the dynamic equilibrium hypothesis.

The velocity auto-correlation macroscale i3,
within the scatter, equal to the transverse
wake scale, L; it is fairly constant with
radius. In the self-preserving region (by
contrast), the density auto-correlation
macroscale is about 0.5 L on the axis and
increases towards L at the wzke edge; these
two scales are not therefore everywhere
equal to each other. By way of comparison,
the maximun shear zone occurs at 1.1 L, the
statistical wake front position is at 2.1 L,
and the wake edge at 3.3 L.
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(7) The normalized spectral densities of the
velocity and temperature are virtually
identical and uniform with radius in the
self-preserving region. They are identical
with the low-speed wake velocity fluctuation
spectirum at the low frequencies, but of de-
creased intensity at frequencies corresponding

to (and higher than) the macroscale.

(8) The spectral densities ar« distorted by the
pseudoturbulence generated by the wake front
intermittency, which is weakly periodic with
a wavelength of about 6 L. The relaxation
length of this psevdoturbulence appears to
be longer than that for the turbulence within

- this front.

It should be reemphasized that the study presented here deals with an

3 essentially steady-state system where Eulerian statistics are performed by
an instrument stationary in a flowing gas. By this process, the resulting
map of statistical properties contains a mixture of both the turbulence
and the pseudoturbuleuce of the front. This composite picture is both
legitimate and convenient for practical applications but it invites further
work by which the turbulence due to the front will be sepsrated from the
bona-fide turbulence inside it. In this new, equally relevant representation,
where the intermittency factor figures prominently, the radial distributions
of properties reported herein will be altered by subtracting the front

pseudoturbulence and adding an amount of turbulence normally unaccounted

because of intermittency. Such work will be reported at a later date.
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APPENDIX A

THE TRANSFER FUNCTIONS

A.1 HOT WIRE
The transfer function W of the hot-wire 1is given by
e(f) -1/2
——wire , _1_ = |1+4 112 fz Mz ; M = time constant. (A.1)
c(f)ﬂw W(£)

where the phase shift is not included; here f is the frequency and M the
wire time constant, The latter {s given by

R =R A
¥ o gt f1-2e, $2) oyt *.2)
¥r r I (1+2¢A"')

Here C is the overall heat-capacity of the wire

C = (density) x (specific heat) x (volume)

¢'_&r the oven-calibration resistance-temperature slope, R' the heated and
"r the equilibrium wire resistance, I the current, A"' the overheat




and € the finite circuit factor which was measured to be 0.008 in our case. .

The quantity a, is zero in our case and thus we can re-write (A.2) as

cpmr l A
M = AR —2 seconds (A.4)
I
Where the specific heat c, density p, wire radius r, and length £ etc., are
given in cgs units. The transfer function W is then given by combining
(A.1) with (A.4).

At this juncture, it is appropriate also to give the limiting value of M at
zero current. By (A.3) and (A./) we get

g .
cpmr
Mo — 4% (A.5)
rr %€ .
where € i{s the dc voltage. We recall that at zero current the Nusselt &
number 1is
@R R )
lim Nu_ = —h‘— L L. (A.6)
1-0° T apsar?

and since at I=0

R =+ R
awm

Lk

the combination (A.S5) and (A.6) gives




A.2 AMPLIFIER

The zero-frequency gain Go of the amplifier is given in Figure A-1, The
amplifier transfer function G/G, has been calibrated for different attenua-

tion settings, is shown on Figure A-2, and has been curve-fitted by

2
- [1 +(1.25) 10712 £'4 (0.75) 107V £3 ]'1 (A.8)
[o]

where f is in cycles per second.

A.3 COMPENSATOR

When the compensator time-constant dial is set at Mg (which is equal to
M1 of program WEB-II) the compensator transfer function is

1/2
1 + 39.6 Mz f2

1 + (0.705) 102 ¢ M, + (0.369) 107 £ Mf - 3.2) 10°¢ ¢3 Mf

which has been measured to 500 kilc-ycles per second and is shown in (A.9)
Figure A-3.

A.4 RMS METER

The transfer function of the Ballantine rms meter set at 300 millivolt full
scale is

. 24 e
VIVM 0.297 _~ 0.261 _ 0.364 (A.10)
1+ JE E l3f§

where E is the dc voltage output from the mean square jack on the meter in
millivolts. For the l-volt full-scale setting this is
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A.5 WAVE ANALYZER !

A.5.1 BANDWIDTH

As Figure A-5 shows, checks made on the frequency-independent, selectable
bandwidtl. of the wave analyzer snowed excellent filtering characteristics
at 0.2-, 3- and l-kilocycle-per-second width; the latter is used for the

measureinents.

A.5.2 TRANSFER FUNCTION

The transfer function H, shown in Figure A-6, was found to be independent
of frequency; tests arc always made at the settings ABSOLUTE, NORMAL, 1 VOLT
f.s., -10 decibels down and using a 1000-ohm load. 1In this case, an rms
input of e millivolts is converted to dc millivolts V by

: ¥
& H
where
- 3 _ 32.9% 33.33 (A.12)
H 9.312 + v —;{— + v3
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APPENDIX B

THE WEB-I1 COMPUTER PROGRAM

The general purpose of this program is to nullify the trequency-response
deficiencies of the apparatus in measuring the frcqu;ncy-intcgrated voltage
output of the hot-wire at each current and each point in the wake. This is
done as follows in each case: the output spectrum is recorded, the overall
transfer functicn measured, and an error-ratio formed from the spectrum
reasurement alone, indicating how much the measured integrated wire output

should be increased to account for apparatus deficiencies.

Each spectrum, taken in the range of 0 to 500 kilocycles per second is
first broken into 7-kilocycle-per-second intervals (the latter increase at
the nizher frequency end) ani the analyzer signal and ncise output noted
and the spectral density of the signal determined; integrated over the
spectrum this gives the integrated wire output ‘éTVM. In the meantime,
the transfer functions of the amplifier and compensator are evaluated at
each frequency. The transfer function of the wire is found as foliows:
the wire time constant outside the wake is known (for each current and
{HHJ m u is its utum-nl,u@ curve. Tre local time constant
pot. hpﬂ“ﬁ is m Edﬁqiv &t formula given ir. the main
:  wire is computed and combined
o %ﬁn

3
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the latter at each frequency is now combined with the net wave analyzer ?
output at that frequency tc give the ide=® hot-wire output at that fre-
quency; integration then leads to the ideal integrated wire output e*2

VTVM
J : VTVM and
*
e VTVM and combined with the wire output e ovTVM measured with the rms

at that point and current. The error ratio J is formed by e

voltmeter to correct the latter.

At each current and point in the wake the program output presents, among
other quantities, the wire time constant M (M(MSEC)), the ideal and actual
integrated wire outputs e*éTVM (VTVM*2) and eéTVM (VTVM2), respectively,
as computed from the spectrum, the same quantity as measured directly
egVTVM (E02), the error ratio J, and the final corrected integrated wire
output e~ (E2). Further, at each station and current the following are
among quantities given as a function of the frequency f (FKCPS): the net
analyzer output V2 (f), the wire, amplifier, and compensator transfer
functions W, G/Go and C, respectively, the overall transfe- function OTF,

and the net wire signal power density in (volts)zlcps.

As ncted from the above remarks, this program provides a meticulous and .
detailed view of the behavior of the complete electromechanical system

over the entire matrix of Operaiing situations. 1In addition to the new

insight it offers into the technique of anemometry, it affords numerous

cross checks of the procedure and increases accuracy. More importantly,

the output can now serve as a starting input for a combined modal-spectral

analysis (i.e., the spectra of the velocity or density fluctuations alone),

a task normally so cumbersome that it has been attempted only once previously.

The procedural diagram of WEB-II is shown on Figure B-1.
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APPENDIX C

THE WEB-III COMPUTER PROGRAM

The purpose of this program was to process the turbulence data through the
response-restoration process of the WEB-II program aﬁd to prepare them for
the eventual analysis into frequency-integrated modes (performed with the
WEB-1IV program).

The basic inputs to this program are the 15 radial traces of integrated
raw hot-wire turbulence signal (1 for each of 15 currents) and the corres-
ponding 15 traces of mean wire voltage; the error ratio J is also put in.
The coordinates of each trace (distinguished by T for the turbulence and

S for the mean or steady traces) are supplied by an analog-to-digital card-
punch as "counts;" by appropriate conversion factors (FT and FS), these

traces are reduced into curves of voltage ET versus radial distance Y.

Utilizing the transfer function of the rms voltmeter, the root-mean-square

oi the turbulent signal (?MST) is obtained. This process is performed by

¢44;$16¢ points, 20 in all, for each x lt!ﬁlﬁl. After subtraction
ﬂﬁ. the actual mpgrgm ﬁtg w{uu ovt;u at ;hciie




b ———

In similar fashion, the mean wire voltage ?' was obtained for each point
using level L from the plotter curves, corrected into € to account for the
line resistance (1.04 ohm), squared and combined with e2 to form the ideal
nondimensional frequency-integrated (but amplified) wire turbulence output
at each curient and point; this was further reduced by dividing by the
zero-frequency amplifier gain Go' Finally, the wire overheat parameter A¢,

against which (e2/e-2)/G§ is given in the output was formed.

The computing procedure for this program is shown in Figure C-1.
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APPENDIX D

THE WEB-IV PROGRAM

The purpose of this program was to supply the modal analysis of the radial
distribution of frequency-integrated turbulent fluctuations; final objec-
tive was therefore to give the velocity and density fluctuations and their

correlation as a function of radius and axial position along the wake.

As a first step, the program precpared a list of the flow properties at each
point in the wake, as derived by the WEB-I program; the location of these
points (20 per x station) were the same as in WEB-III. Various combina-
tions of these flow properties were computed preparatory to insertion in
the wire sensitivity coefficients. Since the Reynolds number lco and the
lc -Nu anc lc - 7) relations were known fr 2 the flow calibration, the
logatithnic derivativn (Re /M) (QN/JRe) and (Re /uu ) @Wu /blu ) were
computed, as was the wire temperature T' at each current and the atnendarc
v(lucs of T ond K. The circuit parameter Cf was ccmputed from the pre-
'vipqqu inh.ltod A' At this point, sufficient information existed for
t’h ilrc sensitivities to the mass flux (‘i) and total tempera-
u... of us. w{ﬁgw U(Y) also allowed
. to. %FWhu)



————

At this point, the net ideal integrated mean sjuare wire voltage e2/G§EZ
from WEB-TII was introduced at each point and current, giving 15 second-
degree polynomials (for the mass flux and To representation) with known
coefficients, and a aimilar group for the entropy-vorticity representation.
A least-squares solution oi these did not work out, and therefore they were
solved by fitting them to a second-degree curve, obtaining the mass flux
and total temperature fluctuations and their correlation m, t, and LI
respectively, the corresponding vorticity (T) and entropy (o) fluctuations,
and the correlation r .. Finally, these fluctuations were also given
normalized to the local velocity and density differences (ue - u(0)) and
Py - P(0) across the wake, as put in from the WEB-I program.

The computations procedure for this program is shown in Figure D-1.
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APPENDIX E

THE WEB-VII COMPUTER PROGRAM

The purpose of the WEB-VII computer program is (1) to perform the combined
modal-spectral analysis of the turbulent fElow and (2) to further:manipulate

the modal results of the WEB-IV program in order to get parameters interest-
ing from a theoretical viewyoint. Thus, this program supplies spactra,

macroscales, turbulent energy ratios and the like.

E.1 MODAL-SPECTRAL ANALYSIS

Here we want to find the fluctuation densigy at each frequencr and at each
point in the wake. The main input is the corrected "ilrw" voltage fluctua-
tion 0292, a function of the frequency, which is given in millivolts
squarec per kilocycle and appears on the last column of the WEB-II outputs.
This qu.antity, it should be notnd appears multiplied by the amplifier
zero-frequency .cin (squared) G , and is first dividcd by the latter to
give EZFLOW (mv)/ke. By uvum the latter by (IMA)* (RORMNET)? (mv)2

we ut the normslized (ad-!l-y integrated) fluctuation dencity (per kc)

at the particular frequency: 1 and by further dividing by the entrcpy

Wwomm'wwumuﬁmm




Now we can proceed with the modal analysis at each frequency by solving

simultaneously the eight equations

72 - Db2 +ES +F
ni ni ni
where i=1, 2..... 8 corresponds to each of the 8 wire currents employed in

WEB-II for that frequency; here, of course, the variable 6“1 is the ratio
of the sensitivity coefficients

5 = ETAU
n ES

This solution gives the results

™ a D1/2
ot - pl/2
P
oT 2T o*
with the star denoting spectral density - e.g., 7* is the rma velocity
fluctuation (normalized to the mean local velocity at that point) per
kilocycle. Corollarv 4quantities formed by this program are 7*2 and 0*2 an
2
2 ™
T ® Tooo
%2
02 4 _g.—
1000

The latter are the mean-square velocity and density (temperature) fluctua-

tion density, normalized with the square of the local mean velocity and

density, respectively, per cycle per second. One quantity of interest,
put out by WEB-VII, is the comparison of the quantities T*/o%*, Another

d




L

where
x2 1 J:' 2
2T * T000 ™ 4

2 .2
* 1 J;
o 2 en—

> 1000 Jo Y
where the 1000-factor appears in order to convert to integrand into cycles
per second (since T*z and 0*2 are obtained withir kilocycle "windows').

The latter two integrals should obviously be equal! to the integrated vel-
ocity and density fluctuations, respectively, at that point in the wake.

The pertinent integral scales (macroscales) are computed from the relations

2
A = 2 8 (0)
2
AT = % £ (0)
s

where u is the local flow velocity (obtained from the WEB-I output) and
32(0) and t2(0) are the limit values of 32 and t2 at zero frequency. In
the present instance these quantities were evaluated at 7 kilocycles per
second. Because both numerator and denominator in the latter two equa-
tions are each normalized to the local mean values, the definition of the

scaes is independent of these values.

This program finally outputed the nondimensional spectra 32/12(0) and
t2/t2(0) versus the nondimensional frequencies :
F(CPS) A
n B ———

t u
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F(CPS) ﬁl




——

Other cutputs gave comparisons of the scales with the transverse wake

scale L (from WEB-V) and the virtual wake (drag) diameter (CDA)I/Z'

This program aiso provided for the manipulation of certain quantities
put out by the WEB-1V program; the following were formed as a function of
position in the wake:

(1) The quantity TAU/SIGMA and the related quantity
s = SR ——
r-1) M

where M is the local Mach number.

(2) The rms velocity and density fluctuations at
each XSTATION, each normalized with the axis
value. (See UPRIME/UPRIMO and RHOPRIM/RHOPRIMO.)

(3) The local average turbulent energy divided by the

local mean kinetic energy

= ENERGY = 37° - 3.46 1y, TO

;"L;"

where we have assumed isotropy in order to
compute the turbulent velocity vector from the
measured longitudinal component, and where

third- and higher-order moments are neglected.

(4) Other quantities manipulating the fluctuations
according to the dynamic equilibrium hypothesis.

Typical outputs appear in Figure 41.




